Flight Test Risk Reduction and Lessons Learned from the “Scorpion” Aircraft Development Program

Dave Sitz
Flight Test Engineer/Pilot
Textron Aviation

SETP Flight Test Safety Workshop
May 2015
Overview

- What is the Scorpion Program?

- Aircraft Description

- Risk Reduction/Lessons Learned from 3 Scenarios:
 - Preparation for First Flight
 - Spin Chute Taxi Test
 - Initial Landing Gear Operations

- Conclusion
 - Condense our experiences into one unified safety approach or theme
The Scorpion Program

- **$20M**
 - Vast Majority of ISR/Strike

- **$$$$$ 5th Gen**
- **$$ 4th Gen**

Scorpion is designed to fill a gap in the tactical aircraft spectrum
Aircraft Description

DIMENSIONS
- Wingspan: 47.3 Feet
- Length: 43.5 Feet

AIRFRAME
- Composite Structure and Skin

PAYLOAD BAY
- Sensors and Comms

SENSOR
- EO/IR Ball, Laser Designator

RADAR
- Weather, Growth Space

EXTERNAL STORES
- Scalable, Precision Munitions

ELECTRONIC SYSTEMS
- Modular Architecture

ENGINES
- 2 x Turbofans

STANDARD EMPTY WEIGHT
- 11,800 lbs

MAX TAKEOFF WEIGHT
- 21,250 lbs

MAX INTERNAL FUEL LOAD
- 6,000 lbs

MAX INTERNAL PAYLOAD
- 3,000 lbs

MAX EXTERNAL STORES
- 6,100 lbs

THRUST
- >8,000 lbs

MAXIMUM SPEED
- 450 KTAS

SERVICE CEILING
- 45,000 ft

FERRY RANGE
- 2,400 NM

* Design Targets
Aircraft Description

Communications
- SAT, Network, UHF, VHF, HF
- Hotspot, Air-Ground, Air-Air, Air-First Responders

Sensors
- EO/IR Ball
- Passive

Fuel
- 3,000 lbs
- Auxiliary
Aircraft Description

- **Aircraft Design**
 - Maximum Use of Existing Systems
 - Engines
 - Avionics
 - Ejection Seats
 - Sub-Systems: Hydraulics, Electrical, Fuel, OBOGS, ECS, Flight Controls
 - New Composite Airframe
 - New Main Landing Gear Struts
 - Engine Inlet

Airframe structure, and the main landing gear struts, are the only completely original parts
Aircraft Description

- MLG Axle
- Piston
- MLG Trunnion
- Metering Pin
- Stand Pipe
- Upper Drag Brace
- Lower Drag Brace
- Torque Links
Risk Reduction/Lessons Learned

- Preparation for First Flight – At a “Macro” Level
 - “Where Do You Even Start?”
 - Cessna Engineering Flight Test Processes and Procedures
 - Quality/Configuration Control
 - Test Planning
 - Independent Safety Reviews
 - Flight Readiness Reviews
 - Special Inspection (Pre-First Flight)
 - SETP Pilots Handbook

Resources, processes, and procedures existed to guide macro-level planning
Risk Reduction/Lessons Learned

- Preparation for First Flight – At a “Micro” Level
 - Aircrew involved in design process for over 1½ years before first flight
 - Where are the “booby traps” due to unique configurations/interactions?
 - The 4 Forces of Flight (what’s really important?):

Flight Test had the time to identify and mitigate potential aircraft-unique “booby traps”
Event 1 - Preparation for First Flight

- First Engine Run – September 2013
Event 1 - Preparation for First Flight

- Inlet: Aerodynamics and Airframe Location (behind Gear Doors)
Event 1 - Preparation for First Flight

- Engine Inlet
 - Natural Flow Visualization of Vortices
Event 1 - Preparation for First Flight

- **Inlet Risk Reduction**
 - “What Can You Do to Reduce Risk?”
 - Pre-Flight Taxi: Test “Worst-Case” Gear Door Configuration
Event 1 - Preparation for First Flight

- Landing Gear Availability
 - “What Can You Do to Reduce Risk?”

“The first flight plan should never be more ambitious than the ground test program that supported it…”

SETP Handbook
Event 1 - Preparation for First Flight

“The primary purpose of a First Flight is to make a successful landing...”

SETP Handbook
Event 1 - Preparation for First Flight

- December 12, 2013

“One flight test condition is worth a thousand expert opinions...”

Wernher von Braun
Event 1 - Preparation for First Flight

- Acknowledging the Team’s Efforts

“Share the pilot’s exhilaration of a First Flight with the ground team. It is probably the only good thing that has happened to them in the last 6 months…” — SETP Handbook
Event 2 - Spin Chute Taxi Test

- Pre-Flight Taxi Testing
 - Brakes/Steering
 - Low/Moderate Speed Taxi Testing
 - Elevator Control Power Evaluation (Aerodynamics: Rotation and Flare)
 - Spin Chute Operational Test (Deploy/Jettison)
 - Last-Minute Aircraft Squawk
 - “Were We Ready?”
Event 2 - Spin Chute Taxi Test

- Spin Chute Controls
 - Two Chutes, Fwd and Aft Panels
 - Fwd: “Drive”, Aft: “Execute Test”
Event 2 - Spin Chute Taxi Test

- Crew Resource Management in Action
Event 2 - Spin Chute Taxi Test

- Was my “experience” working against me?
Event 2 - Spin Chute Taxi Test

What I expected:

- “Deploy Confirmed” –or-
 “No Chute, No Chute”

- Mortar Fire Noise

- Kinesthetic (Seat of Pants)

- Visual

- Control Panel
Event 2 - Spin Chute Taxi Test

What I expected:

- “Deploy Confirmed” –or–
 “No Chute, No Chute”

- Mortar Fire Noise

- Kinesthetic (Seat of Pants)

- Visual

- Control Panel

What happened:

- Nothing (Com blocked)

- Nothing (Com blocked)

- Nothing

- Nothing

- No Change

My Conclusion: Failed Chute Deployment
Event 2 - Spin Chute Taxi Test

<table>
<thead>
<tr>
<th>What I expected:</th>
<th>What happened (Pilot):</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Deploy Confirmed” –or- “No Chute, No Chute”</td>
<td>Nothing (Com blocked)</td>
</tr>
<tr>
<td>Mortar Fire Noise</td>
<td>Heard Mortar Fire</td>
</tr>
<tr>
<td>Kinesthetic (Seat of Pants)</td>
<td>Nothing</td>
</tr>
<tr>
<td>Visual</td>
<td>Nothing</td>
</tr>
<tr>
<td>Control Panel</td>
<td>No Change</td>
</tr>
</tbody>
</table>

Pilot Conclusion: Jettison Chute
Event 2 - Spin Chute Taxi Test

- Inadequate/misleading feedback led to delayed chute jettison
 - Aircrew CRM saved the day
 - Fortunately, the only consequence was a few extra thousand feet of FOD walk for ground crew...
Event 3 - Initial Landing Gear Operations

- Initial Gear Ops – Gear Up Attempt
Event 3 - Initial Landing Gear Operations

- Under airloads, NLG doors overlapped
 - MLG retract sequence did not complete
 - Notice where MLG doors are...
Event 3 - Initial Landing Gear Operations

- Initial Gear Ops – Gear Down Attempt (the one that counts...)

6/16/2015 9:47 AM Company Confidential and Competition Sensitive
Event 3 - Initial Landing Gear Operations

- Gear Down
 - “What Would You Report?”
Event 3 - Initial Landing Gear Operations

- Gear Down – Cockpit Indications
Event 3 - Initial Landing Gear Operations

- Chase reported “apparent down and locked”
 - No MLG “greens” due to incomplete sequence?
- We did NOT declare an in-flight emergency
 - We were doing gear testing, after all
 - Experimental License dictates initial takeoffs/landings from home field
- Emergency Gear Extension?
 - Booby Trap: Continuous 3000 psi hydraulics vs. one-shot pneumatics

- Airloads on MLG Drag Brace higher than anticipated
 - Did not quite reach over-center
 - Gear locked over-center during landing rollout
Event 3 - Initial Landing Gear Operations

- Gear Down – After Landing
Event 3 - Initial Landing Gear Operations

- \sum MLG Forces
Event 3 - Initial Landing Gear Operations

- Troubleshooting and Changes
 - For Gear Up: Adjust NLG Doors
 - For Gear Down: Alleviate MLG Drag Loads
 - Positive G and engine RPM (to assist “mechanical advantage”)
 - Adjust airspeed (to reduce airload on MLG drag brace)
 - Sideslip (to change airload direction from aft gear doors; “air dam” effect)
 - Pulse braking on rollout to ensure load assists over-center locking
 - Additional Instrumentation

- Next Attempt
 - NLG closed but mains still didn’t completely lock over-center
 - This time we DID declare an emergency with McConnell Tower...
Event 3 - Initial Landing Gear Operations

- Declaring an Emergency...
 - We were “called to the principal’s office...”
Event 3 - Initial Landing Gear Operations

- Declaring an Emergency...
 - We were “called to the principal’s office…”

“When you come to a fork in the road, take it…” Yogi Berra

We did, but were “wrong” boy!
Event 3 - Initial Landing Gear Operations

- More Troubleshooting and Changes
 - Engineering “Tiger Team”
 - More NLG Door adjustments, and new actuator
 - Aerodynamic Fairing to reduce MLG Drag Loads
 - New MLG actuator

- Final Success
 - Aircraft-unique changes worked
 - Procedural Lessons Learned
 - Follow-on improvements made
Event 3 - Initial Landing Gear Operations

- Drag Brace Aerodynamic Fairing
Event 3 - Initial Landing Gear Operations

- Final Gear Ops – Gear Up (watch for “special” signal...)
Event 3 - Initial Landing Gear Operations

- Final Gear Ops – Gear Down
Event 3 - Initial Landing Gear Operations

- Final Drag Brace Downlock Spring
Conclusion

- “The (Flight Test Safety) Theory of Everything”

 There isn’t one (yet...)

- MACRO: Proven Processes and Procedures
 - Use of Cessna’s Established Methods
 - SETP Guidance
 - Practice Good CRM
 - Ground Test before Flight Test

- MICRO: Integration with Design; aircraft-unique “Booby Traps”
 - Inlet Risk Reduction
 - Elevator Control Power Evaluation
 - Initial Landing Gear Operations
Questions?

Dave Sitz
Flight Test Pilot
Textron Aviation
(316) 831-4252
dsitz@txtav.com
www.ScorpionJet.com
Questions?

Dave Sitz
Flight Test Pilot
Textron Aviation
(316) 831-4252
dsitz@txtav.com
www.ScorpionJet.com