Lessons Learned from a Scan Eagle Inadvertent Departure from Controlled Flight

LCDR Shaun “Linus” Swartz
VX-31 UAS Project Officer
VX-31 Test

Human / Machine Interface:

Upcoming Projects.wmv
Overview

- Scan Eagle UAS Background
- Mishap Test Background
- Mishap Incident
- Causal Factors
- Lessons Learned / Risk Mitigation
 - How they apply to manned and unmanned Flight Test
- Summary / Conclusion
Scan Eagle Background

- Manufactured by Insitu Corporation
- 44 pounds, 10’ wingspan
- EO or IR nose-mounted camera
- Ceiling 17K’ MSL, Max speed 90 kts (70 kts Flight Clearance Limit)
- Cruise speed approximately 50 kts
- Catapult launched
- Recovery via a vertical tether system “skyhook” approximately 20’ AGL.
Scan Eagle Background
Test Background Facts

• Scan Eagle Test Team
 – Three members do it all (Fly, Mx, Test Plan, RTR…)*

• Test payload was a “critical need item” ISO GWOT
 – Payload consisted of special RF emitters
 – Payload function/end use Classified*
 – Delivery to theatre was to **immediately** follow testing*

• Ground and flight testing (May 2008) to verify:
 – Electromagnetic compatibility (EMC)
 – Payload in-flight function within RF environment*
 – Aircraft stability with payload installed*
 • Payload antenna modified outer mold line of A/C

*Holes in the “Swiss Cheese”
Mishap Payload Configuration

- Payload installed in avionics bay
 - No loss of ISR capability
 - Recommended by Manufacturer*
 - Parts readily available *

*Holes in the “Swiss Cheese”
Mishap vs. Final Payload

- A/C loses no ISR capability
- Emitters less than ½” from yaw rate gyro
- Many delicate/sensitive parts inside avionics bay

- Emitters 12 times farther away from sensors
- New payload bay is a carbon fiber tube…
“Classic Style” Swiss Cheese

Holes included (but not limited too):

1. Payload Classification = Poor communication, perceived blocks
2. Immediate Delivery = Get ‘er done NOW! Accept poor payload location & poor test discipline
3. Manufacturer Approved = It’s probably FINE
4. Ground test RF environment different from flight test = unknowingly invalidated ground test (see #1)
5. Inexperienced Crew = Inexperienced Crew…
Incident

- Dark-o’-thirty start, 2 hour launch delay to troubleshoot payload.
- Power applied to avionics bay while payload adjusted/installed/removed (bay had to be removed to turn payload on)
- Various warning and cautions throughout troubleshooting.
- Recurring yaw rate warning coincident with payload reinstallation events.
- Normal to have multiple cautions during pre-start sequence → yaw rate warnings ignored.
Incident (cont)

- Eventually decided payload would be flown in “non-operative” mode.
 - Violated test plan no-go criteria
 - Senior member (ex-military) said “Go”
- “Ready for Launch” indication was received. Normal launch ensued.
- 13 seconds after launch, yaw rate warning was observed – Scan Eagle departed controlled flight.
- Result – loss of only Scan Eagle test asset in VX-31 inventory and 7 month delay before testing resumed.
Incident Summary

- Ground testing indicated payload was green for flight, crew elected to fly
 - Ground testing was invalid
 - No-Go criteria not adhered to
 - Launched anyway

- After launch, RF emissions from the payload caused spurious yaw rate data to be passed to the autopilot
 - Departure from controlled flight
 - Splat….

- Many places where mishap could have been avoided
Causal Factors, Lessons Learned, Conclusions
Causal Factors

• Material Factor: Yaw rate sensor gave erroneous rudder inputs +/- 114 deg to autopilot.

• Material Factor: Installed payload produced internal EMI which caused yaw rate sensor anomalies.
 – After successful ground test, payload was adjusted to transmit on a different frequency, invalidating EMI results of ground test.
Causal Factors (cont)

• Aircrew Factor: Aircrew could not discriminate validity of multiple spurious warnings and cautions on the flight control display.
 – Color coded Warnings and Cautions listed in scrolling format on control display.
 – Only most recent 3 displayed.
 – Creates tendency to ignore Warnings / Cautions prior to preflight diagnostic check on catapult.
Causal Factors (cont)

• Aircrew Factor: Lead operator (PIC) had Human Factors (HFAC) issues that were ignored to “get the job done”.

 – Family member died 1 week prior.
 – Extensive winter driving over previous 10 days to funeral etc.
 – Fit to fly?
Causal Factors (cont)

- **Aircrew Factor:** Aircrew did not abort flight despite multiple yaw rate sensor warnings prior to launch.
 - 6 warnings prior to launch, attributed to removing avionics bay.
 - Decision to ignore warnings until vehicle was on catapult based on accepted practice of ignoring spurious erroneous warnings when aircraft is being jostled by ground crew.
 - No documentation stating yaw rate sensor should trigger an abort. Experience based knowledge.
Causal Factors (cont)

- **Aircrew Factor**: Aircrew felt pressured to fly in order to stay within SOP currency requirements.
 - SOP states 1 flight in previous 30 days to maintain currency.
 - Currency set to expire in 9 days.
 - Though test was determined not possible (no-go), and due to difficulty in scheduling range time, aircrew elected to fly payload in “non-operative” mode to maintain currency.
Causal Factors (cont)

• Maintenance Factor: Flight test team did not have an effective configuration control or QA policy.
 – Initial ground tests showed no payload EMI effects on rate sensors.
 – No procedures in place to freeze configuration.
 – Customer changed payload transmission frequency and disassembled avionics bay.
 – Invalidated ground tests and calibration efforts. Aircrew not informed, no guidance given to customer.
Lessons Learned

- No substitute for sound NATOPS, systems, and procedural knowledge.
 - Critical especially in test environment. What is your airplane telling you? What does it mean? Have I met abort criteria?
Lessons Learned (cont)

• Operational Risk Management (ORM) is a tool to mitigate risks. Use it.

 – What is different about today’s flight (snakes in the grass)? What can possibly bite us today? What can we watch for? When will we cry uncle?
Lessons Learned (cont)

• Is test aircrew experience adequate for given test? If not, how do we mitigate that?

 – Multi-place cockpits, thorough briefs, currency/proficiency matrices, THA’s, ORM.
Lessons Learned (cont)

• Don’t let outside influences over-ride Go/No-Go criteria.
 – Maintaining currency should have been irrelevant.
 – Lack of standardization and documentation of training contributed.
 – Difficulty scheduling range periods contributed.
Lessons Learned (cont)

- Documented Configuration Control is essential.
 - Aircrew need to understand limits, importance, and receive training.
 - Customers need to understand limits and be held accountable for configuration changes.
 - 2 way flow of communication.
Lessons Learned (cont)

• Maintenance needs to be documented thoroughly and aircrew need to be familiar with the status of their aircraft.
 – NAMP procedures do not exist for non-POR UAS platforms.
 – Quality/completeness of manufacturer provided maintenance procedures vary.
 – At VX-31, manufacturer’s documentation was adapted to accepted NAMP formats and NAMP-like procedures were implemented to extent possible.
 • Nalcomis tracking, MAF’s, Safe for Flight
Lessons Learned (cont)

- Adhere to and fly your Test Plan.
 - Would have avoided this mishap.
 - UAS acceptance, familiarization, proficiency, and currency flights were not covered under fully reviewed plans.
 - “Operations Plan”, using NAVAIRINST Test Plan format, was developed.
Lessons Learned (cont)

- Know your Mishap Response Plan (MRP).
 - Response from on-site personnel was inadequate and untimely.
 - Non-military aircrew were unfamiliar with VX-31 MRP, military mishap reporting procedures.
 - Highlighted the need for periodic mishap training / drills, especially for non-military personnel.
Lessons Learned (cont)

• Communication is a must-have for a successful test program.

 – Warfighter ↔ Acquisition folks
 – Acquisition folks ↔ Requirements folks
 – Requirements folks ↔ Engineers
 – Engineers ↔ Testers
 – Testers ↔ Leadership
Lessons Learned - Summary

• Why did this happen?
 – “Just a UAV” culture in manned aviation
 – Doesn’t cost too much (< $150K)
 – OK to take shortcuts and violate No-Go, EMI testing

• Real cost
 – Not $$$
 – Delay in critical need item to the warfighter
 – Credibility as a test program
Subsequent Tests

• Payload was redesigned
 – Smarter and better

• Test team re-organized
 – Lessons learned implemented

• Valid ground testing conducted
 – Configuration control maintained

• Successful flight testing in November 2008
 – Payload delivered to theatre **7 months late!!!**
Conclusion

• Lessons Learned have been learned before.
• Applicable to unmanned and manned aviation alike.
• “Best practices” applicable to all aviation test events.
Questions?